enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Biasvariance_tradeoff

    In artificial neural networks, the variance increases and the bias decreases as the number of hidden units increase, [12] although this classical assumption has been the subject of recent debate. [4] Like in GLMs, regularization is typically applied. In k-nearest neighbor models, a high value of k leads to high bias and low variance (see below).

  3. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    But if the learning algorithm is too flexible, it will fit each training data set differently, and hence have high variance. A key aspect of many supervised learning methods is that they are able to adjust this tradeoff between bias and variance (either automatically or by providing a bias/variance parameter that the user can adjust).

  4. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    Reduces variance in high-variance low-bias weak learner, [13] which can improve efficiency (statistics) Can be performed in parallel, as each separate bootstrap can be processed on its own before aggregation. [14] Disadvantages: For a weak learner with high bias, bagging will also carry high bias into its aggregate [13] Loss of interpretability ...

  5. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    This is known as the biasvariance tradeoff. Keeping a function simple to avoid overfitting may introduce a bias in the resulting predictions, while allowing it to be more complex leads to overfitting and a higher variance in the predictions. It is impossible to minimize both simultaneously.

  6. Vapnik–Chervonenkis theory - Wikipedia

    en.wikipedia.org/wiki/Vapnik–Chervonenkis_theory

    Let (,) be a measurable space.For any measure on (,), and any measurable functions :, define = Measurability issues will be ignored here, for more technical detail see. [1] ...

  7. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    Underfitting is the inverse of overfitting, meaning that the statistical model or machine learning algorithm is too simplistic to accurately capture the patterns in the data. A sign of underfitting is that there is a high bias and low variance detected in the current model or algorithm used (the inverse of overfitting: low bias and high variance).

  8. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    In particular, trees that are grown very deep tend to learn highly irregular patterns: they overfit their training sets, i.e. have low bias, but very high variance. Random forests are a way of averaging multiple deep decision trees, trained on different parts of the same training set, with the goal of reducing the variance.

  9. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    MARS models tend to have a good bias-variance trade-off. The models are flexible enough to model non-linearity and variable interactions (thus MARS models have fairly low bias), yet the constrained form of MARS basis functions prevents too much flexibility (thus MARS models have fairly low variance).