Search results
Results from the WOW.Com Content Network
Matrix multiplication was first described by the French mathematician Jacques Philippe Marie Binet in 1812, [2] to represent the composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra , and as such has numerous applications in many areas of mathematics, as well as in applied ...
Some programming languages utilize doubly subscripted arrays (or arrays of arrays) to represent an m-by-n matrix. Some programming languages start the numbering of array indexes at zero, in which case the entries of an m -by- n matrix are indexed by 0 ≤ i ≤ m − 1 {\displaystyle 0\leq i\leq m-1} and 0 ≤ j ≤ n − 1 {\displaystyle 0\leq ...
Matrix multiplication completed in 2n-1 steps for two n×n matrices on a cross-wired mesh. There are a variety of algorithms for multiplication on meshes . For multiplication of two n × n on a standard two-dimensional mesh using the 2D Cannon's algorithm , one can complete the multiplication in 3 n -2 steps although this is reduced to half ...
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Numerous algorithms are known and there has been much research into the topic.
In computer science, Cannon's algorithm is a distributed algorithm for matrix multiplication for two-dimensional meshes first described in 1969 by Lynn Elliot Cannon. [1] [2]It is especially suitable for computers laid out in an N × N mesh. [3]