enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    Given the difficulty of constructing explicit small families of solutions, much less presenting something like a "general" solution to the Einstein field equation, or even a "general" solution to the vacuum field equation, a very reasonable approach is to try to find qualitative properties which hold for all solutions, or at least for all ...

  3. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    The elements of an arithmetico-geometric sequence () are the products of the elements of an arithmetic progression (in blue) with initial value and common difference , = + (), with the corresponding elements of a geometric progression (in green) with initial value and common ratio , =, so that [4]

  4. Polytrope - Wikipedia

    en.wikipedia.org/wiki/Polytrope

    A polytrope with index n = 3 is a good model for the cores of white dwarfs of higher masses, according to the equation of state of relativistic degenerate matter. [7] A polytrope with index n = 3 is usually also used to model main-sequence stars like the Sun, at least in the radiation zone, corresponding to the Eddington standard model of ...

  5. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    But if one requires an exact solution or a solution describing strong fields, the evolution of both the metric and the stress–energy tensor must be solved for at once. To obtain solutions, the relevant equations are the above quoted EFE (in either form) plus the continuity equation (to determine the evolution of the stress–energy tensor):

  6. Frobenius solution to the hypergeometric equation - Wikipedia

    en.wikipedia.org/wiki/Frobenius_solution_to_the...

    Since z = 1 − x, the solution of the hypergeometric equation at x = 1 is the same as the solution for this equation at z = 0. But the solution at z = 0 is identical to the solution we obtained for the point x = 0, if we replace each γ by α + β − γ + 1. Hence, to get the solutions, we just make this substitution in the previous results.

  7. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.

  8. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.

  9. How to Solve It - Wikipedia

    en.wikipedia.org/wiki/How_to_Solve_It

    How to Solve It suggests the following steps when solving a mathematical problem: . First, you have to understand the problem. [2]After understanding, make a plan. [3]Carry out the plan.