Search results
Results from the WOW.Com Content Network
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
With the availability of large amounts of DNA data, matching of nucleotide sequences has become an important application. [1] Approximate matching is also used in spam filtering. [5] Record linkage is a common application where records from two disparate databases are matched. String matching cannot be used for most binary data, such as images ...
P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive. A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
a.b matches any string that contains an "a", and then any character and then "b". a.*b matches any string that contains an "a", and then the character "b" at some later point. These constructions can be combined to form arbitrarily complex expressions, much like one can construct arithmetical expressions from numbers and the operations +, − ...
In computer science, the two-way string-matching algorithm is a string-searching algorithm, discovered by Maxime Crochemore and Dominique Perrin in 1991. [1] It takes a pattern of size m, called a “needle”, preprocesses it in linear time O(m), producing information that can then be used to search for the needle in any “haystack” string, taking only linear time O(n) with n being the ...
Since the hash computation is done on each loop, the algorithm with a naive hash computation requires O(mn) time, the same complexity as a straightforward string matching algorithm. For speed, the hash must be computed in constant time. The trick is the variable hs already contains the previous hash value of s[i..i+m-1]. If that value can be ...