enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chemical shift - Wikipedia

    en.wikipedia.org/wiki/Chemical_shift

    Chemical shift δ is usually expressed in parts per million (ppm) by frequency, because it is calculated from [5] =, where ν sample is the absolute resonance frequency of the sample, and ν ref is the absolute resonance frequency of a standard reference compound, measured in the same applied magnetic field B 0.

  3. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    Other NMR-active nuclei can also cause these satellites, but carbon is most common culprit in the proton NMR spectra of organic compounds. Sometimes other peaks can be seen around 1 H peaks, known as spinning sidebands and are related to the rate of spin of an NMR tube. These are experimental artifacts from the spectroscopic analysis itself ...

  4. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    The vast majority of molecules in a solution are solvent molecules, and most regular solvents are hydrocarbons and so contain NMR-active hydrogen-1 nuclei. In order to avoid having the signals from solvent hydrogen atoms overwhelm the experiment and interfere in analysis of the dissolved analyte, deuterated solvents are used where >99% of the ...

  5. Fluorine-19 nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorine-19_nuclear...

    19 F NMR chemical shifts in the literature vary strongly, commonly by over 1 ppm, even within the same solvent. [5] Although the reference compound for 19 F NMR spectroscopy, neat CFCl 3 (0 ppm), [6] has been used since the 1950s, [7] clear instructions on how to measure and deploy it in routine measurements were not present until recently. [5]

  6. Paramagnetic nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Paramagnetic_nuclear...

    Directly bound nuclei have hyperfine shifts of thousands of ppm but are usually not oberservable due to extremely fast relaxation and line broadening. [5] 1 H NMR spectrum of 1,1'-dimethylnickelocene, illustrating the dramatic chemical shifts observed in some paramagnetic compounds. The sharp signals near 0 ppm are from solvent.

  7. Gutmann–Beckett method - Wikipedia

    en.wikipedia.org/wiki/Gutmann–Beckett_method

    Gutmann, a chemist renowned for his work on non-aqueous solvents, described an acceptor-number scale for solvent Lewis acidity [4] with two reference points relating to the 31 P NMR chemical shift of Et 3 PO in the weakly Lewis acidic solvent hexane (δ = 41.0 ppm, AN 0) and in the strongly Lewis acidic solvent SbCl 5 (δ = 86.1 ppm, AN 100).

  8. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not 0, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  9. Shoolery's rule - Wikipedia

    en.wikipedia.org/wiki/Shoolery's_rule

    Shoolery's rule, which is named after James Nelson Shoolery, is a good approximation of the chemical shift δ of methylene groups in proton nuclear magnetic resonance.We can calculate shift of the CH 2 protons in a A–CH 2 –B structure using the formula