Search results
Results from the WOW.Com Content Network
The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...
In mathematics, Ramanujan's master theorem, named after Srinivasa Ramanujan, [1] is a technique that provides an analytic expression for the Mellin transform of an analytic function. Page from Ramanujan's notebook stating his Master theorem. The result is stated as follows:
Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin transform of an analytic function; MacMahon master theorem (MMT), in enumerative combinatorics and linear algebra; Glasser's master theorem in integral calculus
Calculator Applications is one of several academic events sanctioned by the University Interscholastic League (UIL) in Texas, US. It is also a competition held by the Texas Math and Science Coaches Association, using the same rules as the UIL. Calculator Applications is designed to test students' abilities to use general calculator functions.
It is a generalization of the master theorem for divide-and-conquer recurrences, which assumes that the sub-problems have equal size. It is named after mathematicians Mohamad Akra and Louay Bazzi. It is named after mathematicians Mohamad Akra and Louay Bazzi.
For competition purposes, separate divisions are held for Grades 4-6, Grades 7-8, and Grades 9-12, with separate subjects covered on each test as follows: The test for Grades 4-6 covers basic arithmetic and mathematical functions. The test for Grades 7-8 covers the subjects under Grades 4-6 plus algebra, geometry and number theory.
The master problem is then re-solved. The master problem represents an initial convex set which is further constrained by information gathered from the subproblems. Because the feasible space only shrinks as information is added, the objective value for the master function provides a lower bound on the objective function of the overall problem.
He explained the title as follows: "a Master Theorem from the masterly and rapid fashion in which it deals with various questions otherwise troublesome to solve." The result was re-derived (with attribution) a number of times, most notably by I. J. Good who derived it from his multilinear generalization of the Lagrange inversion theorem .