Search results
Results from the WOW.Com Content Network
If only a fixed number of pairwise comparisons are to be made, the Tukey–Kramer method will result in a more precise confidence interval. In the general case when many or all contrasts might be of interest, the Scheffé method is more appropriate and will give narrower confidence intervals in the case of a large number of comparisons.
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations.
For some applications, the integration interval = [,] needs to be divided into uneven intervals – perhaps due to uneven sampling of data, or missing or corrupted data points. Suppose we divide the interval I {\\displaystyle I} into an even number N {\\displaystyle N} of subintervals of widths h k {\\displaystyle h_{k}} .
If the bootstrap distribution of an estimator is symmetric, then percentile confidence-interval are often used; such intervals are appropriate especially for median-unbiased estimators of minimum risk (with respect to an absolute loss function). Bias in the bootstrap distribution will lead to bias in the confidence interval.
The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.
Schematic of Jackknife Resampling. In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling.It is especially useful for bias and variance estimation.