Search results
Results from the WOW.Com Content Network
The K-factor is the bending capacity of sheet metal, and by extension the forumulae used to calculate this. [1] [2] [3] Mathematically it is an engineering aspect of geometry. [4] Such is its intricacy in precision sheet metal bending [5] (with press brakes in particular) that its proper application in engineering has been termed an art. [4] [5]
A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s, e.g. water. [clarify]
K factor (crude oil refining), a system for classifying crude oil; K-factor (fire protection), formula used to calculate the discharge rate from a fire system nozzle; K-factor (metalurgy), formulae used to calculate the bending capacity of sheet metal; K factor (traffic engineering), the proportion of annual average daily traffic occurring in ...
The K-factor depends on many variables including the material, the type of bending operation (coining, bottoming, air-bending, etc.) the tools, etc. and is typically between 0.3 and 0.5. The following equation relates the K-factor to the bend allowance: [12] = + /.
The conversion factor k was chosen so that the values for C were the same as in the Chézy formula for the typical hydraulic slope of S=0.001. [9] The value of k is 0.001 −0.04. [10] Typical C factors used in design, which take into account some increase in roughness as pipe ages are as follows: [11]
The global proportionality constant for the flow of water through a porous medium is called the hydraulic conductivity (K, unit: m/s). Permeability, or intrinsic permeability, ( k , unit: m 2 ) is a part of this, and is a specific property characteristic of the solid skeleton and the microstructure of the porous medium itself, independently of ...
In fire protection engineering, the K-factor formula is used to calculate the volumetric flow rate from a nozzle. Spray nozzles can for example be fire sprinklers or water mist nozzles, hose reel nozzles, water monitors and deluge fire system nozzles.
In transportation engineering, the K factor is defined as the proportion of annual average daily traffic occurring in an hour. [1] This factor is used for designing and analyzing the flow of traffic on highways. K factors must be calculated at a continuous count station, usually an "automatic traffic recorder", for a year before being determined.