enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n.

  3. Hardy–Ramanujan–Littlewood circle method - Wikipedia

    en.wikipedia.org/wiki/HardyRamanujan...

    The initial idea is usually attributed to the work of Hardy with Srinivasa Ramanujan a few years earlier, in 1916 and 1917, on the asymptotics of the partition function.It was taken up by many other researchers, including Harold Davenport and I. M. Vinogradov, who modified the formulation slightly (moving from complex analysis to exponential sums), without changing the broad lines.

  4. Ramanujan's congruences - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_congruences

    In mathematics, Ramanujan's congruences are the congruences for the partition function p(n) discovered by Srinivasa Ramanujan: (+) (), (+) (), (+) ().In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence

  5. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    Srinivasa Ramanujan discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of n {\displaystyle n} ends in the digit 4 or 9, the number of partitions of n {\displaystyle n} will be divisible by 5.

  6. Partition function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    The partition function or configuration integral, as used in probability theory, information theory and dynamical systems, is a generalization of the definition of a partition function in statistical mechanics. It is a special case of a normalizing constant in probability theory, for the Boltzmann distribution.

  7. Hardy–Ramanujan theorem - Wikipedia

    en.wikipedia.org/wiki/HardyRamanujan_theorem

    In mathematics, the HardyRamanujan theorem, proved by Ramanujan and checked by Hardy [1] states that the normal order of the number () of distinct prime factors of a number is ⁡ ⁡. Roughly speaking, this means that most numbers have about this number of distinct prime factors.

  8. Crank of a partition - Wikipedia

    en.wikipedia.org/wiki/Crank_of_a_partition

    Let n be a non-negative integer and let p(n) denote the number of partitions of n (p(0) is defined to be 1).Srinivasa Ramanujan in a paper [3] published in 1918 stated and proved the following congruences for the partition function p(n), since known as Ramanujan congruences.

  9. Taxicab number - Wikipedia

    en.wikipedia.org/wiki/Taxicab_number

    Srinivasa Ramanujan (picture) was bedridden when he developed the idea of taxicab numbers, according to an anecdote from G. H. Hardy.. In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1]