Search results
Results from the WOW.Com Content Network
DNA may be modified, either naturally or artificially, by a number of physical, chemical and biological agents, resulting in mutations. Hermann Muller found that "high temperatures" have the ability to mutate genes in the early 1920s, [2] and in 1927, demonstrated a causal link to mutation upon experimenting with an x-ray machine, noting phylogenetic changes when irradiating fruit flies with ...
Hydroxyl radicals can attack the deoxyribose DNA backbone and bases, potentially causing a plethora of lesions that can be cytotoxic or mutagenic. Cells have developed complex and efficient repair mechanisms to fix the lesions. In the case of free radical attack on DNA, base-excision repair is the repair mechanism used. Hydroxyl radical ...
The free radical theory of aging states that organisms age because cells accumulate free radical damage over time. [1] A free radical is any atom or molecule that has a single unpaired electron in an outer shell. [2] While a few free radicals such as melanin are not chemically reactive, most biologically relevant free radicals are highly ...
Free Radical Research, formerly Free Radical Research Communications, is an academic journal that publishes research papers, hypotheses, and reviews on free radicals, redox signaling, antioxidants, and oxidative damage. It is published by Informa Healthcare.
Drug metabolism is the metabolic breakdown of drugs by living organisms, usually through specialized enzymatic systems. More generally, xenobiotic metabolism (from the Greek xenos "stranger" and biotic "related to living beings") is the set of metabolic pathways that modify the chemical structure of xenobiotics, which are compounds foreign to an organism's normal biochemistry, such as any drug ...
A free-radical reaction is any chemical reaction involving free radicals. This reaction type is abundant in organic reactions . Two pioneering studies into free radical reactions have been the discovery of the triphenylmethyl radical by Moses Gomberg (1900) and the lead-mirror experiment [ 1 ] described by Friedrich Paneth in 1927.
To change this template's initial visibility, the |state= parameter may be used: {{ Free Radical Design | state = collapsed }} will show the template collapsed, i.e. hidden apart from its title bar. {{ Free Radical Design | state = expanded }} will show the template expanded, i.e. fully visible.
Radicals can undergo a disproportionation reaction through a radical elimination mechanism (See Fig. 1). Here a radical abstracts a hydrogen atom from another same radical to form two non-radical species: an alkane and an alkene. Radicals can also undergo an elimination reaction to generate a new radical as the leaving group.