enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    Cartesian product of the sets {x,y,z} and {1,2,3}In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. [1]

  3. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...

  4. Product (category theory) - Wikipedia

    en.wikipedia.org/wiki/Product_(category_theory)

    In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.

  5. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    For instance, for the sets {1, 2, 3} and {2, 3, 4}, the symmetric difference set is {1, 4}. It is the set difference of the union and the intersection, (A ∪ B) \ (A ∩ B) or (A \ B) ∪ (B \ A). Cartesian product of A and B, denoted A × B, is the set whose members are all possible ordered pairs (a, b), where a is a member of A and b is a ...

  6. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    If A and B are sets, then the Cartesian product (or simply product) is defined to be: A × B = {(a,b) | a ∈ A and b ∈ B}. That is, A × B is the set of all ordered pairs whose first coordinate is an element of A and whose second coordinate is an element of B.

  7. Ternary relation - Wikipedia

    en.wikipedia.org/wiki/Ternary_relation

    Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs, i.e. a subset of the Cartesian product A × B of some sets A and B, so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A, B and C.

  8. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    The Cartesian product of manifolds is also a manifold. The dimension of the product manifold is the sum of the dimensions of its factors. Its topology is the product topology, and a Cartesian product of charts is a chart for the product manifold. Thus, an atlas for the product manifold can be constructed using atlases for its factors.

  9. Product topology - Wikipedia

    en.wikipedia.org/wiki/Product_topology

    The axiom of choice occurs again in the study of (topological) product spaces; for example, Tychonoff's theorem on compact sets is a more complex and subtle example of a statement that requires the axiom of choice and is equivalent to it in its most general formulation, [3] and shows why the product topology may be considered the more useful ...