Search results
Results from the WOW.Com Content Network
There are many more recent algorithms such as LPBoost, TotalBoost, BrownBoost, xgboost, MadaBoost, LogitBoost, and others. Many boosting algorithms fit into the AnyBoost framework, [9] which shows that boosting performs gradient descent in a function space using a convex cost function.
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
The earliest known version of this technique was in an algorithm named "fictitious play" which was proposed in game theory in the early 1950s. Grigoriadis and Khachiyan [3] applied a randomized variant of "fictitious play" to solve two-player zero-sum games efficiently using the multiplicative weights algorithm. In this case, player allocates ...
The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...
AdaBoost (short for Adaptive Boosting) is a statistical classification meta-algorithm formulated by Yoav Freund and Robert Schapire in 1995, who won the 2003 Gödel Prize for their work. It can be used in conjunction with many types of learning algorithm to improve performance.
Distributed Evolutionary Algorithms in Python (DEAP) is an evolutionary computation framework for rapid prototyping and testing of ideas. [2] [3] [4] It incorporates the data structures and tools required to implement most common evolutionary computation techniques such as genetic algorithm, genetic programming, evolution strategies, particle swarm optimization, differential evolution, traffic ...
Theano is an open source project [3] primarily developed by the Montreal Institute for Learning Algorithms (MILA) at the Université de Montréal. [4]The name of the software references the ancient philosopher Theano, long associated with the development of the golden mean.
Introduction to Algorithms is a book on computer programming by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The book is described by its publisher as "the leading algorithms text in universities worldwide as well as the standard reference for professionals". [ 1 ]