Search results
Results from the WOW.Com Content Network
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion .
Parallel bars of varying width and contrast, known as sine-wave gratings, are sequentially viewed by the patient. The width of the bars and their distance apart represent spatial frequency, measured in cycles per degree. Log–log plot of spatial contrast sensitivity functions for luminance and chromatic contrast
A sine, square, and sawtooth wave at 440 Hz A composite waveform that is shaped like a teardrop. A waveform generated by a synthesizer In electronics , acoustics , and related fields, the waveform of a signal is the shape of its graph as a function of time, independent of its time and magnitude scales and of any displacement in time.
Tracing the y component of a circle while going around the circle results in a sine wave (red). Tracing the x component results in a cosine wave (blue). Both waves are sinusoids of the same frequency but different phases. A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine ...
As the sine wave contains only one frequency, its shape is unaltered. A low-pass filter (blue trace) rounds the pulses by removing the high frequency components. All systems are low pass to some extent. Note that the phase of the sine wave is different for the lowpass and the highpass cases, due to the phase distortion of the filters.
A standing wave is a continuous form of normal mode. In a standing wave, all the space elements (i.e. (x, y, z) coordinates) are oscillating in the same frequency and in phase (reaching the equilibrium point together), but each has a different amplitude. The general form of a standing wave is:
The input sinusoidal voltage is usually defined to have zero phase, meaning that it is arbitrarily chosen as a convenient time reference. So the phase difference is attributed to the current function, e.g. sin(2 π ft + φ ), whose orthogonal components are sin(2 π ft ) cos( φ ) and sin(2 π ft + π /2) sin( φ ), as we have seen.
In psychoacoustics, a pure tone is a sound with a sinusoidal waveform; that is, a sine wave of constant frequency, phase-shift, and amplitude. [1] By extension, in signal processing a single-frequency tone or pure tone is a purely sinusoidal signal (e.g., a voltage).