enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...

  3. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.

  4. Distance matrix - Wikipedia

    en.wikipedia.org/wiki/Distance_matrix

    In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]

  5. Spatial weight matrix - Wikipedia

    en.wikipedia.org/wiki/Spatial_weight_matrix

    The concept of a spatial weight is used in spatial analysis to describe neighbor relations between regions on a map. [1] If location i {\displaystyle i} is a neighbor of location j {\displaystyle j} then w i j ≠ 0 {\displaystyle w_{ij}\neq 0} otherwise w i j = 0 {\displaystyle w_{ij}=0} .

  6. Hypergraph - Wikipedia

    en.wikipedia.org/wiki/Hypergraph

    A parallel for the adjacency matrix of a hypergraph can be drawn from the adjacency matrix of a graph. In the case of a graph, the adjacency matrix is a square matrix which indicates whether pairs of vertices are adjacent.

  7. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    The Laplacian matrix is the easiest to define for a simple graph, but more common in applications for an edge-weighted graph, i.e., with weights on its edges — the entries of the graph adjacency matrix. Spectral graph theory relates properties of a graph to a spectrum, i.e., eigenvalues, and eigenvectors of matrices associated with the graph ...

  8. Minimum spanning tree - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree

    A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]

  9. Seidel adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Seidel_adjacency_matrix

    In mathematics, in graph theory, the Seidel adjacency matrix of a simple undirected graph G is a symmetric matrix with a row and column for each vertex, having 0 on the diagonal, −1 for positions whose rows and columns correspond to adjacent vertices, and +1 for positions corresponding to non-adjacent vertices.