Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The formula follows from considering the set {1, 2, 3, ..., n} and counting separately (a) the k-element groupings that include a particular set element, say "i", in every group (since "i" is already chosen to fill one spot in every group, we need only choose k − 1 from the remaining n − 1) and (b) all the k-groupings that don't include "i ...
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.
To obtain the Gaussian binomial coefficient (), each word is associated with a factor q d, where d is the number of inversions of the word, where, in this case, an inversion is a pair of positions where the left of the pair holds the letter 1 and the right position holds the letter 0.
The case α = 1 gives the series 1 + x + x 2 + x 3 + ..., where the coefficient of each term of the series is simply 1. The case α = 2 gives the series 1 + 2x + 3x 2 + 4x 3 + ..., which has the counting numbers as coefficients. The case α = 3 gives the series 1 + 3x + 6x 2 + 10x 3 + ..., which has the triangle numbers as coefficients.
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.
William Betz was active in the movement to reform mathematics in the United States at that time, had written many texts on elementary mathematics topics and had "devoted his life to the improvement of mathematics education". [3] Many students and educators in the US now use the word "FOIL" as a verb meaning "to expand the product of two ...