Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
One may show by induction that F(n) counts the number of ways that a n × 1 strip of squares may be covered by 2 × 1 and 1 × 1 tiles. On the other hand, if such a tiling uses exactly k of the 2 × 1 tiles, then it uses n − 2k of the 1 × 1 tiles, and so uses n − k tiles total.
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
The expansion of the n th power uses the numbers n rows down from the top of the triangle. An application of the above formula for the square of a binomial is the "(m, n)-formula" for generating Pythagorean triples: For m < n, let a = n 2 − m 2, b = 2mn, and c = n 2 + m 2; then a 2 + b 2 = c 2.
To compute the largest power of 2 dividing the binomial coefficient () write m = 3 and n − m = 7 in base p = 2 as 3 = 11 2 and 7 = 111 2.Carrying out the addition 11 2 + 111 2 = 1010 2 in base 2 requires three carries:
Lucas's theorem can be generalized to give an expression for the remainder when () is divided by a prime power p k.However, the formulas become more complicated. If the modulo is the square of a prime p, the following congruence relation holds for all 0 ≤ s ≤ r ≤ p − 1, a ≥ 0, and b ≥ 0.
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.