Search results
Results from the WOW.Com Content Network
This yields Kirchhoff's law: α λ = ε λ {\displaystyle \alpha _{\lambda }=\varepsilon _{\lambda }} By a similar, but more complicated argument, it can be shown that, since black-body radiation is equal in every direction (isotropic), the emissivity and the absorptivity, if they happen to be dependent on direction, must again be equal for any ...
Kirchhoff's applications of this law to spectroscopy are captured in three laws of spectroscopy: An incandescent solid, liquid or gas under high pressure emits a continuous spectrum. A hot gas under low pressure emits a "bright-line" or emission-line spectrum. A continuous spectrum source viewed through a cool, low-density gas produces an ...
Gustav Robert Kirchhoff (German: [ˈgʊs.taːf ˈkɪʁç.hɔf]; 12 March 1824 – 17 October 1887) was a German chemist, mathematican and physicist who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.
Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph
Emissivity of a body at a given temperature is the ratio of the total emissive power of a body to the total emissive power of a perfectly black body at that temperature. Following Planck's law, the total energy radiated increases with temperature while the peak of the emission spectrum shifts to shorter wavelengths. The energy emitted at ...
The rule of mutual exclusion in molecular spectroscopy relates the observation of molecular vibrations to molecular symmetry.It states that no normal modes can be both Infrared and Raman active in a molecule that possesses a center of symmetry.
The measured spectra are used to determine the chemical composition and physical properties of astronomical objects (such as their temperature, density of elements in a star, velocity, black holes and more). [12] An important use for spectroscopy is in biochemistry. Molecular samples may be analyzed for species identification and energy content ...
A wide variety of absorption band and line shapes exist, and the analysis of the band or line shape can be used to determine information about the system that causes it. In many cases it is convenient to assume that a narrow spectral line is a Lorentzian or Gaussian , depending respectively on the decay mechanism or temperature effects like ...