enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    Posterior probability is a conditional probability conditioned on randomly observed data. Hence it is a random variable. For a random variable, it is important to summarize its amount of uncertainty. One way to achieve this goal is to provide a credible interval of the posterior probability. [11]

  3. Posterior predictive distribution - Wikipedia

    en.wikipedia.org/wiki/Posterior_predictive...

    In Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. [1] [2]Given a set of N i.i.d. observations = {, …,}, a new value ~ will be drawn from a distribution that depends on a parameter , where is the parameter space.

  4. Conjugate prior - Wikipedia

    en.wikipedia.org/wiki/Conjugate_prior

    In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().

  5. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian theory calls for the use of the posterior predictive distribution to do predictive inference, i.e., to predict the distribution of a new, unobserved data point. That is, instead of a fixed point as a prediction, a distribution over possible points is returned. Only this way is the entire posterior distribution of the parameter(s) used.

  6. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    The Bernoulli distribution has a single parameter equal to the probability of one outcome, which in most cases is the probability of landing on heads. Devising a good model for the data is central in Bayesian inference. In most cases, models only approximate the true process, and may not take into account certain factors influencing the data. [2]

  7. Prior probability - Wikipedia

    en.wikipedia.org/wiki/Prior_probability

    An informative prior expresses specific, definite information about a variable. An example is a prior distribution for the temperature at noon tomorrow. A reasonable approach is to make the prior a normal distribution with expected value equal to today's noontime temperature, with variance equal to the day-to-day variance of atmospheric temperature, or a distribution of the temperature for ...

  8. Laplace's approximation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_approximation

    Laplace's approximation provides an analytical expression for a posterior probability distribution by fitting a Gaussian distribution with a mean equal to the MAP solution and precision equal to the observed Fisher information.

  9. Inverse probability - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability

    In modern terms, given a probability distribution p(x|θ) for an observable quantity x conditional on an unobserved variable θ, the "inverse probability" is the posterior distribution p(θ|x), which depends both on the likelihood function (the inversion of the probability distribution) and a prior distribution.