Search results
Results from the WOW.Com Content Network
Pyridine and poly(4-vinyl) pyridine have been shown to form conducting molecular wires with remarkable polyenimine structure on UV irradiation, a process which accounts for at least some of the visible light absorption by aged pyridine samples. These wires have been theoretically predicted to be both highly efficient electron donors and ...
In organic chemistry, the Bohlmann–Rahtz pyridine synthesis is a reaction that generates substituted pyridines in two steps, first a condensation reaction between an enamine and an ethynylketone to form an aminodiene intermediate, which after heat-induced E/Z isomerization undergoes a cyclodehydration to yield 2,3,6-trisubstituted pyridines.
Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C 4 H 4 NH. [3] It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N -methylpyrrole, C 4 H 4 NCH 3 .
Pyrrolidine is a base. Its basicity is typical of other dialkyl amines. [7] Relative to many secondary amines, pyrrolidine is distinctive because of its compactness, a consequence of its cyclic structure. Pyrrolidine is used as a building block in the synthesis of more complex organic compounds.
Below is one published mechanism for the reaction: [5] Mechanism for the Hantzsch Pyrrole Synthesis. The mechanism starts with the amine (1) attacking the β carbon of the β-ketoesters (2), and eventually forming an enamine (3). The enamine then attacks the carbonyl carbon of the α-haloketone (4).
The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). [1] [2] [3] The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group (e.g. an ester as shown) α to a carbonyl group (2). [4] The Knorr pyrrole synthesis
The Boger pyridine synthesis is a cycloaddition approach to the formation of pyridines named after its inventor Dale L. Boger, who first reported it in 1981. [1] The reaction is a form of inverse-electron demand Diels-Alder reaction in which an enamine reacts with a 1,2,4- triazine to form the pyridine nucleus.
The aldehyde and pyrrole are heated in this medium to afford modest yields of the meso tetrasubstituted porphyrins [RCC 4 H 2 N] 4 H 2. The reaction entails both condensation of the aldehydes with the 2,5-positions of the pyrrole but also oxidative dehydrogenation of the porphyrinogen [RCC 4 H 2 NH] 4 .