enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirichlet–Jordan test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet–Jordan_test

    In mathematics, the Dirichlet–Jordan test gives sufficient conditions for a complex-valued, periodic function to be equal to the sum of its Fourier series at a point of continuity. Moreover, the behavior of the Fourier series at points of discontinuity is determined as well (it is the midpoint of the values of the discontinuity).

  3. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  4. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    There are many known sufficient conditions for the Fourier series of a function to converge at a given point x, for example if the function is differentiable at x. Even a jump discontinuity does not pose a problem: if the function has left and right derivatives at x , then the Fourier series converges to the average of the left and right limits ...

  5. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The theorems proving that a Fourier series is a valid representation of any periodic function (that satisfies the Dirichlet conditions), and informal variations of them that don't specify the convergence conditions, are sometimes referred to generically as Fourier's theorem or the Fourier theorem. [39] [40] [41] [42]

  6. Dirichlet series - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_series

    The most famous example of a Dirichlet series is = =,whose analytic continuation to (apart from a simple pole at =) is the Riemann zeta function.. Provided that f is real-valued at all natural numbers n, the respective real and imaginary parts of the Dirichlet series F have known formulas where we write +:

  7. Peter Gustav Lejeune Dirichlet - Wikipedia

    en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet

    The memoir pointed out Cauchy's mistake and introduced Dirichlet's test for the convergence of series. It also introduced the Dirichlet function as an example of a function that is not integrable (the definite integral was still a developing topic at the time) and, in the proof of the theorem for the Fourier series, introduced the Dirichlet ...

  8. Maass wave form - Wikipedia

    en.wikipedia.org/wiki/Maass_wave_form

    2.3 Relation between Maass forms and Dirichlet series. ... Theorem (Fourier coefficients of Maass forms) ... Example. Let : be a modular ...

  9. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Although the proof of Dirichlet's Theorem makes use of calculus and analytic number theory, some proofs of examples are much more straightforward. In particular, the proof of the example of infinitely many primes of the form 4 n + 3 {\displaystyle 4n+3} makes an argument similar to the one made in the proof of Euclid's theorem (Silverman 2013).