enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gram per cubic centimetre - Wikipedia

    en.wikipedia.org/wiki/Gram_per_cubic_centimetre

    The official SI symbols are g/cm 3, g·cm −3, or g cm −3. It is equivalent to the units gram per millilitre (g/mL) and kilogram per litre (kg/L). The density of water is about 1 g/cm 3, since the gram was originally defined as the mass of one cubic centimetre of water at its maximum density at 4 °C (39 °F). [1]

  3. Specific volume - Wikipedia

    en.wikipedia.org/wiki/Specific_volume

    For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...

  4. Specific weight - Wikipedia

    en.wikipedia.org/wiki/Specific_weight

    The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...

  5. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  6. Distribution function (physics) - Wikipedia

    en.wikipedia.org/wiki/Distribution_function...

    The usual normalization of the distribution function is (,) = (,,), = (,), where N is the total number of particles and n is the number density of particles – the number of particles per unit volume, or the density divided by the mass of individual particles.

  7. Number density - Wikipedia

    en.wikipedia.org/wiki/Number_density

    Using the number density as a function of spatial coordinates, the total number of objects N in the entire volume V can be calculated as = (,,), where dV = dx dy dz is a volume element. If each object possesses the same mass m 0 , the total mass m of all the objects in the volume V can be expressed as m = ∭ V m 0 n ( x , y , z ) d V ...

  8. Mass concentration (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Mass_concentration_(chemistry)

    In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.

  9. Relative density - Wikipedia

    en.wikipedia.org/wiki/Relative_density

    The relative density of gases is often measured with respect to dry air at a temperature of 20 °C and a pressure of 101.325 kPa absolute, which has a density of 1.205 kg/m 3. Relative density with respect to air can be obtained by =, where is the molar mass and the approximately equal sign is used because equality pertains only if 1 mol of the ...