Search results
Results from the WOW.Com Content Network
Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect.
The proof of the theorem is thus a variant of the method of infinite descent [8] and relies on the repeated application of Euclidean divisions on E: let P ∈ E(Q) be a rational point on the curve, writing P as the sum 2P 1 + Q 1 where Q 1 is a fixed representant of P in E(Q)/2E(Q), the height of P 1 is about 1 / 4 of the one of P (more ...
The classic applications of elliptic coordinates are in solving partial differential equations, e.g., Laplace's equation or the Helmholtz equation, for which elliptic coordinates are a natural description of a system thus allowing a separation of variables in the partial differential equations. Some traditional examples are solving systems such ...
For an ellipse with semi-major axis a and semi-minor axis b and eccentricity e = √ 1 − b 2 /a 2, the complete elliptic integral of the second kind E(e) is equal to one quarter of the circumference C of the ellipse measured in units of the semi-major axis a. In other words: = ().
The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (2.182, -1.661, 1.0). The foci of the ellipse and hyperbola lie at x = ±2.0. Elliptic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional elliptic coordinate system ...
is an odd function, i.e. ℘ ′ = ℘ ′ (). [6] One of the main results of the theory of elliptic functions is the following: Every elliptic function with respect to a given period lattice Λ {\displaystyle \Lambda } can be expressed as a rational function in terms of ℘ {\displaystyle \wp } and ℘ ′ {\displaystyle \wp '} .
Plot of the Jacobi ellipse (x 2 + y 2 /b 2 = 1, b real) and the twelve Jacobi elliptic functions pq(u,m) for particular values of angle φ and parameter b. The solid curve is the ellipse, with m = 1 − 1/b 2 and u = F(φ,m) where F(⋅,⋅) is the elliptic integral of the first kind (with parameter =). The dotted curve is the unit circle.
The designation E 8 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled A n, B n, C n, D n, and five exceptional cases labeled G 2, F 4, E 6, E 7, and E 8. The E 8 algebra is the largest and most complicated of these exceptional cases.