enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homogeneity and heterogeneity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Homogeneity_and...

    [1] [2] [3] Assuming a variable is homoscedastic when in reality it is heteroscedastic (/ ˌ h ɛ t ər oʊ s k ə ˈ d æ s t ɪ k /) results in unbiased but inefficient point estimates and in biased estimates of standard errors, and may result in overestimating the goodness of fit as measured by the Pearson coefficient.

  3. Minnesota Multiphasic Personality Inventory - Wikipedia

    en.wikipedia.org/wiki/Minnesota_Multiphasic...

    Its primary goals were to enhance the item pool, update the test norms, optimize existing scales, and introduce new scales (that assess disordered eating, compulsivity, impulsivity, and self-importance). [34] It features a new, nationally representative normative sample, selected to match projections for race and ethnicity, education, and age.

  4. Study heterogeneity - Wikipedia

    en.wikipedia.org/wiki/Study_heterogeneity

    Statistical testing for a non-zero heterogeneity variance is often done based on Cochran's Q [13] or related test procedures. This common procedure however is questionable for several reasons, namely, the low power of such tests [14] especially in the very common case of only few estimates being combined in the analysis, [15] [7] as well as the specification of homogeneity as the null ...

  5. Homogeneity and heterogeneity - Wikipedia

    en.wikipedia.org/wiki/Homogeneity_and_heterogeneity

    Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...

  6. Statistical inference - Wikipedia

    en.wikipedia.org/wiki/Statistical_inference

    Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.

  7. Diffusion-weighted magnetic resonance imaging - Wikipedia

    en.wikipedia.org/wiki/Diffusion-weighted...

    [notes 1] Diffusion itself is tensorial, but in many cases the objective is not really about trying to study brain diffusion per se, but rather just trying to take advantage of diffusion anisotropy in white matter for the purpose of finding the orientation of the axons and the magnitude or degree of anisotropy. Tensors have a real, physical ...

  8. Cluster sampling - Wikipedia

    en.wikipedia.org/wiki/Cluster_sampling

    An example of cluster sampling is area sampling or geographical cluster sampling.Each cluster is a geographical area in an area sampling frame.Because a geographically dispersed population can be expensive to survey, greater economy than simple random sampling can be achieved by grouping several respondents within a local area into a cluster.

  9. Average treatment effect - Wikipedia

    en.wikipedia.org/wiki/Average_treatment_effect

    In a randomized trial (i.e., an experimental study), the average treatment effect can be estimated from a sample using a comparison in mean outcomes for treated and untreated units. However, the ATE is generally understood as a causal parameter (i.e., an estimate or property of a population ) that a researcher desires to know, defined without ...