Search results
Results from the WOW.Com Content Network
In physics, a wave packet (also known as a wave train or wave group) is a short burst of localized wave action that travels as a unit, outlined by an envelope.
Solitary wave in a laboratory wave channel. In mathematics and physics, a soliton is a nonlinear, self-reinforcing, localized wave packet that is strongly stable, in that it preserves its shape while propagating freely, at constant velocity, and recovers it even after collisions with other such localized wave packets.
This wave packet becomes increasingly localized with the addition of many waves. The Fourier transform is a mathematical operation that separates a wave packet into its individual plane waves. The waves shown here are real for illustrative purposes only; in quantum mechanics the wave function is generally complex .
Second-order initial conditions are found that suppress secular behavior and excite a wave packet of which the energy agrees with fluid theory. The figure shows the energy density of a wave packet traveling at the group velocity, its energy being carried away by electrons moving at the phase velocity. Total energy, the area under the curves, is ...
In physics, a wave packet is a short "burst" or "envelope" of wave action that travels as a unit. A wave packet can be analyzed into, or can be synthesized from, an infinite set of component sinusoidal waves of different wavenumbers, with phases and amplitudes such that they interfere constructively only over a small region of space, and destructively elsewhere.
While periodic travelling waves have been known as solutions of the wave equation since the 18th century, their study in nonlinear systems began in the 1970s. A key early research paper was that of Nancy Kopell and Lou Howard [1] which proved several fundamental results on periodic travelling waves in reaction–diffusion equations.
Categorization for signal modulation based on data and carrier types. In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a separate signal called the modulation signal that typically contains information to be transmitted. [1]
The "direction of wave propagation" is the direction of a wave's energy flow, and the direction that a small wave packet will move, i.e. the direction of the group velocity. For light waves in vacuum, this is also the direction of the Poynting vector. On the other hand, the wave vector points in the direction of phase velocity.