enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scherrer equation - Wikipedia

    en.wikipedia.org/wiki/Scherrer_Equation

    The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis. It is named after Paul Scherrer.

  3. Three-dimensional X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_X-ray...

    Compared with destructive techniques, e.g. three-dimensional electron backscatter diffraction (3D EBSD), [5] with which the sample is serially sectioned and imaged, 3DXRD and similar X-ray nondestructive techniques have the following advantages: They require less sample preparation, thus limiting the introduction of new structures in the sample.

  4. R-factor (crystallography) - Wikipedia

    en.wikipedia.org/wiki/R-factor_(crystallography)

    In crystallography, the R-factor (sometimes called residual factor or reliability factor or the R-value or R Work) is a measure of the disagreement between the crystallographic model and the experimental X-ray diffraction data - lower the R value lower is the disagreement or

  5. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. The resulting map of the directions of the X-rays far from the sample is called a diffraction pattern.

  6. X-ray spectroscopy - Wikipedia

    en.wikipedia.org/wiki/X-ray_spectroscopy

    Atoms can be excited by a high-energy beam of charged particles such as electrons (in an electron microscope for example), protons (see PIXE) or a beam of X-rays (see X-ray fluorescence, or XRF or also recently in transmission XRT). These methods enable elements from the entire periodic table to be analysed, with the exception of H, He and Li.

  7. Characteristic X-ray - Wikipedia

    en.wikipedia.org/wiki/Characteristic_X-ray

    An example of K-alpha lines is Fe K-alpha emitted as iron atoms are spiraling into a black hole at the center of a galaxy. [8] The K-alpha line in copper is frequently used as the primary source of X-ray radiation in lab-based X-ray diffraction spectrometry (XRD) instruments.

  8. X-ray scattering techniques - Wikipedia

    en.wikipedia.org/wiki/X-ray_scattering_techniques

    This is an X-ray diffraction pattern formed when X-rays are focused on a crystalline material, in this case a protein. Each dot, called a reflection, forms from the coherent interference of scattered X-rays passing through the crystal.

  9. Selected area diffraction - Wikipedia

    en.wikipedia.org/wiki/Selected_area_diffraction

    Once the sample is prepared and examined in a modern transmission electron microscope, the device allows for a routine diffraction acquisition in a matter of seconds. If the images are interpreted correctly, they can be used to identify crystal structures, determine their orientations, measure crystal characteristics, examine crystal defects or ...