enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    The last rule can be used to move modular arithmetic into division. If b divides a, then (a/b) mod m = (a mod b m) / b. The modular multiplicative inverse is defined by the following rules: Existence: There exists an integer denoted a −1 such that aa −1 ≡ 1 (mod m) if and only if a is coprime with m.

  4. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.

  5. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The modular inverse of aR mod N is REDC((aR mod N) −1 (R 3 mod N)). Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies.

  6. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.

  7. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    The product and the multiplicative inverse of two roots of unity are also roots of unity. In fact, if x m = 1 and y n = 1 , then ( x −1 ) m = 1 , and ( xy ) k = 1 , where k is the least common multiple of m and n .

  8. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  9. Modular equation - Wikipedia

    en.wikipedia.org/wiki/Modular_equation

    That implies that any two rational functions F and G, in the function field of the modular curve, will satisfy a modular equation P(F,G) = 0 with P a non-zero polynomial of two variables over the complex numbers. For suitable non-degenerate choice of F and G, the equation P(X,Y) = 0 will actually define the modular curve.