enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.

  3. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is also an example of a fractal curve .

  4. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.

  5. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function can be constructed as the double pointwise limit of a sequence of continuous functions, as follows: , = ((⁡ (!))) for integer j and k. This shows that the Dirichlet function is a Baire class 2 function.

  6. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.

  7. Discontinuous linear map - Wikipedia

    en.wikipedia.org/wiki/Discontinuous_linear_map

    Define an operator T which takes the polynomial function x ↦ p(x) on [0,1] to the same function on [2,3]. As a consequence of the Stone–Weierstrass theorem, the graph of this operator is dense in , so this provides a sort of maximally discontinuous linear map (confer nowhere continuous function).

  8. Pathological (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Pathological_(mathematics)

    The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions. In fact, using the Baire category theorem, one can show that continuous functions are generically nowhere differentiable. [2]

  9. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions. [1] [2] These theories are usually studied in the context of real and complex numbers and functions.