Search results
Results from the WOW.Com Content Network
The Poincaré lemma states that if B is an open ball in R n, any closed p-form ω defined on B is exact, for any integer p with 1 ≤ p ≤ n. [1] More generally, the lemma states that on a contractible open subset of a manifold (e.g., ), a closed p-form, p > 0, is exact. [citation needed]
The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...
A key consequence of this is that "the integral of a closed form over homologous chains is equal": If ω is a closed k-form and M and N are k-chains that are homologous (such that M − N is the boundary of a (k + 1)-chain W), then =, since the difference is the integral = =.
Define e x as the value of the infinite series = =! = + +! +! +! + (Here n! denotes the factorial of n. One proof that e is irrational uses a special case of this formula.) Inverse of logarithm integral.
Define e t (z) ≡ e tz, and n ≡ deg P. Then S t (z) is the unique degree < n polynomial which satisfies S t (k) (a) = e t (k) (a) whenever k is less than the multiplicity of a as a root of P. We assume, as we obviously can, that P is the minimal polynomial of A. We further assume that A is a diagonalizable matrix.
Therefore, the second condition, that f xx be greater (or less) than zero, could equivalently be that f yy or tr(H) = f xx + f yy be greater (or less) than zero at that point. A condition implicit in the statement of the test is that if f x x = 0 {\displaystyle f_{xx}=0} or f y y = 0 {\displaystyle f_{yy}=0} , it must be the case that D ( a , b ...
This formula can be used to derive a formula that computes the symbol of the composition of differential operators. In fact, let P and Q be differential operators (with coefficients that are differentiable sufficiently many times) and R = P ∘ Q . {\displaystyle R=P\circ Q.}
In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).