Search results
Results from the WOW.Com Content Network
The input power provided by the cyclist is equal to the product of angular speed (i.e. the number of pedal revolutions per minute times 2π) and the torque at the spindle of the bicycle's crankset. The bicycle's drivetrain transmits the input power to the road wheel , which in turn conveys the received power to the road as the output power of ...
The jump in acceleration equals the force on the mass divided by the mass. That is, each time the mass passes through a minimum or maximum displacement, the mass experiences a discontinuous acceleration, and the jerk contains a Dirac delta until the mass stops.
The work of this spring on a body moving along the space with the curve X(t) = (x(t), y(t), z(t)), is calculated using its velocity, v = (v x, v y, v z), to obtain = = =. For convenience, consider contact with the spring occurs at t = 0 , then the integral of the product of the distance x and the x-velocity, xv x dt , over time t is 1 / 2 ...
For a body moving in a circle of radius at a constant speed , its acceleration has a magnitude = and is directed toward the center of the circle. [ note 9 ] The force required to sustain this acceleration, called the centripetal force , is therefore also directed toward the center of the circle and has magnitude m v 2 / r {\displaystyle mv^{2}/r} .
The gravitational torque between the Moon and the tidal bulge of Earth causes the Moon to be constantly promoted to a slightly higher orbit (~3.8 cm per year) and Earth to be decelerated (by −25.858 ± 0.003″/cy²) in its rotation (the length of the day increases by ~1.7 ms per century, +2.3 ms from tidal effect and −0.6 ms from post ...
The aerodynamic center of an airfoil is usually close to 25% of the chord behind the leading edge of the airfoil. When making tests on a model airfoil, such as in a wind-tunnel, if the force sensor is not aligned with the quarter-chord of the airfoil, but offset by a distance x, the pitching moment about the quarter-chord point, / is given by
The SI unit of acceleration is the metre per second squared (m s −2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second. Other forms
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...