Search results
Results from the WOW.Com Content Network
The tropospheric tabulation continues to 11,000 meters (36,089 ft), where the temperature has fallen to −56.5 °C (−69.7 °F), the pressure to 22,632 pascals (3.2825 psi), and the density to 0.3639 kilograms per cubic meter (0.02272 lb/cu ft). Between 11 km and 20 km, the temperature remains constant.
At IUPAC standard temperature and pressure (0 °C and 100 kPa), dry air has a density of approximately 1.2754 kg/m 3. At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3.
Standard sea-level conditions (SSL), [1] also known as sea-level standard (SLS), defines a set of atmospheric conditions for physical calculations. The term "standard sea level " is used to indicate that values of properties are to be taken to be the same as those standard at sea level, and is done to define values for use in general calculations.
These figures should be compared with the temperature and density of Earth's atmosphere plotted at NRLMSISE-00, which shows the air density dropping from 1200 g/m 3 at sea level to 0.125 g/m 3 at 70 km, a factor of 9600, indicating an average scale height of 70 / ln(9600) = 7.64 km, consistent with the indicated average air temperature over ...
Typical usages are as a basis for pressure altimeter calibrations, aircraft performance calculations, aircraft and rocket design, ballistic tables, and meteorological diagrams." [1] For example, the U.S. Standard Atmosphere derives the values for air temperature, pressure, and mass density, as a function of altitude above sea level.
At the nominal body temperature of 37 °C (99 °F), water has a vapour pressure of 6.3 kilopascals (47 mmHg); which is to say, at an ambient pressure of 6.3 kilopascals (47 mmHg), the boiling point of water is 37 °C (99 °F). A pressure of 6.3 kPa—the Armstrong limit—is about 1/16 of the standard sea-level atmospheric pressure of 101.3 ...
The U.S. Standard Atmosphere is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. The model, based on an existing international standard, was first published in 1958 by the U.S. Committee on Extension to the Standard Atmosphere, and ...
Air pressure in an automobile tire relative to atmosphere (gauge pressure) [citation needed] +210 to +900 kPa +30 to +130 psi Air pressure in a bicycle tire relative to atmosphere (gauge pressure) [57] 300 kPa 50 psi Water pressure of a garden hose [58] 300 to 700 kPa 50–100 psi Typical water pressure of a municipal water supply in the US [59]