Search results
Results from the WOW.Com Content Network
C.a.R.– Compass and Ruler (also known as Z.u.L., which stands for the German "Zirkel und Lineal") — is a free and open source interactive geometry app that can do geometrical constructions in Euclidean and non-Euclidean geometry. The software is Java based. The author is René Grothmann of the Catholic University of Eichstätt-Ingolstadt.
Live Geometry is a free CodePlex project that lets you create interactive ruler and compass constructions and experiment with them. It is written in Silverlight 4 and C# 4.0 (Visual Studio 2010). The core engine is a flexible and extensible framework that allows easy addition of new figure types and features.
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a compass. The idealized ruler, known as a straightedge, is assumed to be infinite in ...
It keeps an amount of functionality of C.a.R. but uses a different graphical interface which purportedly eliminates some intermediate dialogs and provides direct access to numerous effects. Constructions are done using a main palette, which contains some useful construction shortcuts in addition to the standard compass and ruler tools.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...
This dictum led to a deep study of possible compass and straightedge constructions, and three classic construction problems: how to use these tools to trisect an angle, to construct a cube twice the volume of a given cube, and to construct a square equal in area to a given circle. The proofs of the impossibility of these constructions, finally ...
Angles may be trisected via a neusis construction using tools beyond an unmarked straightedge and a compass. The example shows trisection of any angle θ > 3π / 4 by a ruler with length equal to the radius of the circle, giving trisected angle φ = θ / 3 .