enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  3. Data cleansing - Wikipedia

    en.wikipedia.org/wiki/Data_cleansing

    Data cleansing or data cleaning is the process of identifying and correcting (or removing) corrupt, inaccurate, or irrelevant records from a dataset, table, or database. It involves detecting incomplete, incorrect, or inaccurate parts of the data and then replacing, modifying, or deleting the affected data. [ 1 ]

  4. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  5. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    Pre-processing and Post-processing Run-time configuration for tuning & calibration DNN model interconnect Common platform TensorFlow, Keras, Caffe, Torch: Algorithm training No No / Separate files in most formats No No No Yes ONNX: Algorithm training Yes No / Separate files in most formats No No No Yes

  6. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Preprocessing Instances Format Default Task Created (updated) Reference Creator Artificial Characters Dataset Artificially generated data describing the structure of 10 capital English letters. Coordinates of lines drawn given as integers. Various other features. 6000 Text Handwriting recognition, classification 1992 [133] H. Guvenir et al.

  7. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    This can affect the model's understanding and generation capabilities, particularly for languages with rich morphology or tokens not well-represented in the training data. Simplicity in Preprocessing: It simplifies the preprocessing pipeline by eliminating the need for complex tokenization and vocabulary management, reducing the preprocessing ...

  8. Data sanitization - Wikipedia

    en.wikipedia.org/wiki/Data_sanitization

    Data sanitization methods are also applied for the cleaning of sensitive data, such as through heuristic-based methods, machine-learning based methods, and k-source anonymity. [ 2 ] This erasure is necessary as an increasing amount of data is moving to online storage, which poses a privacy risk in the situation that the device is resold to ...

  9. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    Diagram of the feature learning paradigm in ML for application to downstream tasks, which can be applied to either raw data such as images or text, or to an initial set of features of the data. Feature learning is intended to result in faster training or better performance in task-specific settings than if the data was input directly (compare ...