enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Addition - Wikipedia

    en.wikipedia.org/wiki/Addition

    Addition of fractions is much simpler when the denominators are the same; in this case, one can simply add the numerators while leaving the denominator the same: + = +, so + = + =. [ 63 ] The commutativity and associativity of rational addition is an easy consequence of the laws of integer arithmetic. [ 64 ]

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction) [n 1] is a rational number written as a/b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 / 2 ⁠, − ⁠ 8 / 5 ⁠, ⁠ −8 / 5 ⁠, and ⁠ 8 / −5 ⁠.

  4. Multiplication and repeated addition - Wikipedia

    en.wikipedia.org/wiki/Multiplication_and...

    In mathematics education, there was a debate on the issue of whether the operation of multiplication should be taught as being a form of repeated addition.Participants in the debate brought up multiple perspectives, including axioms of arithmetic, pedagogy, learning and instructional design, history of mathematics, philosophy of mathematics, and computer-based mathematics.

  5. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    Continued fractions can also be applied to problems in number theory, and are especially useful in the study of Diophantine equations. In the late eighteenth century Lagrange used continued fractions to construct the general solution of Pell's equation, thus answering a question that had fascinated mathematicians for more than a thousand years. [9]

  6. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    If this infinite continued fraction converges at all, it must converge to one of the roots of the monic polynomial x 2 + bx + c = 0. Unfortunately, this particular continued fraction does not converge to a finite number in every case. We can easily see that this is so by considering the quadratic formula and a monic polynomial with real ...

  7. Egyptian fraction - Wikipedia

    en.wikipedia.org/wiki/Egyptian_fraction

    These include problems of bounding the length or maximum denominator in Egyptian fraction representations, finding expansions of certain special forms or in which the denominators are all of some special type, the termination of various methods for Egyptian fraction expansion, and showing that expansions exist for any sufficiently dense set of ...

  8. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    It examines problems like how prime numbers are distributed and the claim that every even number is a sum of two prime numbers. [83] Algebraic number theory employs algebraic structures to analyze the properties of and relations between numbers. Examples are the use of fields and rings, as in algebraic number fields like the ring of integers ...

  9. Elementary arithmetic - Wikipedia

    en.wikipedia.org/wiki/Elementary_arithmetic

    A subtraction problem such as is solved by borrowing a 10 from the tens place to add to the ones place in order to facilitate the subtraction. Subtracting 9 from 6 involves borrowing a 10 from the tens place, making the problem into +. This is indicated by crossing out the 8, writing a 7 above it, and writing a 1 above the 6.