Search results
Results from the WOW.Com Content Network
In molecular biology, alpha-amylase inhibitor (or α-...) is a protein family which inhibits mammalian alpha-amylases specifically, by forming a tight stoichiometric 1:1 complex with alpha-amylase. This family of inhibitors has no action on plant and microbial alpha amylases. They are found in raw plants/herbs such as cinnamon and bacteria ...
γ-Amylase: EC 3.2.1.3 : is a digestive enzyme Cellulase # EC 3.2.1.4 : breaks down cellulose from plant material Sucrase-isomaltase: EC 3.2.1.10 - Mannosyl-oligosaccharide glucosidase # EC 3.2.1.106 catalyzes the first trimming step of the N-glycosylation pathway; is associated with Congenital Disorder of Glycosylation type IIb: Acid α ...
An inhibitor of alpha-amylase, called phaseolamin, has been tested as a potential diet aid. [10] When used as a food additive, amylase has E number E1100, and may be derived from pig pancreas or mold fungi. Bacilliary amylase is also used in clothing and dishwasher detergents to dissolve starches from fabrics and dishes.
Hence, α-glucosidase inhibitors (like acarbose) are used as anti-diabetic drugs in combination with other anti-diabetic drugs. Luteolin has been found to be a strong inhibitor of α-glucosidase. The compound can inhibit the enzyme up to 36% with a concentration of 0.5 mg/ml. [ 21 ] As of 2016, this substance is being tested in rats, mice and ...
Alpha-glucosidase inhibitors (AGIs) are oral anti-diabetic drugs used for diabetes mellitus type 2 that work by preventing the digestion of carbohydrates (such as starch and table sugar). They are found in raw plants/herbs such as cinnamon and bacteria (containing the inhibitor acarbose ).
From these natural templates many other inhibitors have been developed, including isofagomine and deoxygalactonojirimycin, and various unsaturated compounds such as PUGNAc. Inhibitors that are in clinical use include the anti-diabetic drugs acarbose and miglitol, and the antiviral drugs oseltamivir and zanamivir. Some proteins have been found ...
This inhibition may follow the competitive, uncompetitive or mixed patterns. In substrate inhibition there is a progressive decrease in activity at high substrate concentrations, potentially from an enzyme having two competing substrate-binding sites. At low substrate, the high-affinity site is occupied and normal kinetics are followed.
This enzyme is a part of a family of enzymes called glycoside hydrolase family 31 (GH31). This is due to the digestive mechanism of the enzyme. GH31 enzymes undergo what is known as the Koshland double displacement mechanism [11] in which a glycosylation and deglycosylation step occurs, resulting in the retention of the overall configuration of the anomeric center.