enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cutoff frequency - Wikipedia

    en.wikipedia.org/wiki/Cutoff_frequency

    In electronics, cutoff frequency or corner frequency is the frequency either above or below which the power output of a circuit, such as a line, amplifier, or electronic filter has fallen to a given proportion of the power in the passband.

  3. Low-pass filter - Wikipedia

    en.wikipedia.org/wiki/Low-pass_filter

    The frequency response of a filter is generally represented using a Bode plot, and the filter is characterized by its cutoff frequency and rate of frequency rolloff. In all cases, at the cutoff frequency, the filter attenuates the input power by half or 3 dB.

  4. Roll-off - Wikipedia

    en.wikipedia.org/wiki/Roll-off

    For some filter classes, such as the Butterworth filter, the insertion loss is still monotonically increasing with frequency and quickly asymptotically converges to a roll-off of 20n dB/decade, but in others, such as the Chebyshev or elliptic filter the roll-off near the cut-off frequency is much faster and elsewhere the response is anything ...

  5. High-pass filter - Wikipedia

    en.wikipedia.org/wiki/High-pass_filter

    In electronics, a filter is a two-port electronic circuit which removes frequency components from a signal (time-varying voltage or current) applied to its input port. A high-pass filter attenuates frequency components below a certain frequency, called its cutoff frequency, allowing higher frequency components to pass through.

  6. Audio filter - Wikipedia

    en.wikipedia.org/wiki/Audio_filter

    An audio filter is a frequency-dependent circuit, working in the audio frequency range, 0 Hz to 20 kHz. Audio filters can amplify (boost), pass or attenuate (cut) some frequency ranges. Audio filters can amplify (boost), pass or attenuate (cut) some frequency ranges.

  7. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    A simple example of a Butterworth filter is the third-order low-pass design shown in the figure on the right, with = 4/3 F, = 1 Ω, = 3/2 H, and = 1/2 H. [3] Taking the impedance of the capacitors to be / and the impedance of the inductors to be , where = + is the complex frequency, the circuit equations yield the transfer function for this device:

  8. Zobel network - Wikipedia

    en.wikipedia.org/wiki/Zobel_network

    The most significant effect that needs to be compensated for is that at some cut-off frequency the line response starts to roll-off like a simple low-pass filter. The effective bandwidth of the line can be increased with a section that is a high-pass filter matching this roll-off, combined with an attenuator.

  9. Half-power point - Wikipedia

    en.wikipedia.org/wiki/Half-power_point

    The half-power point is the point at which the output power has dropped to half of its peak value; that is, at a level of approximately −3 dB. [1] [a]In filters, optical filters, and electronic amplifiers, [2] the half-power point is also known as half-power bandwidth and is a commonly used definition for the cutoff frequency.