enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    In numerical analysis, multivariate interpolation or multidimensional interpolation is interpolation on multivariate functions, having more than one variable or defined over a multi-dimensional domain. [1] A common special case is bivariate interpolation or two-dimensional interpolation, based on two variables or two dimensions.

  3. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Brahmagupta's interpolation formula — seventh-century formula for quadratic interpolation; Extensions to multiple dimensions: Bilinear interpolation; Trilinear interpolation; Bicubic interpolation; Tricubic interpolation; Padua points — set of points in R 2 with unique polynomial interpolant and minimal growth of Lebesgue constant; Hermite ...

  4. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    The formula above is obtained by combining the composite Simpson's 1/3 rule with the one consisting of using Simpson's 3/8 rule in the extreme subintervals and Simpson's 1/3 rule in the remaining subintervals. The result is then obtained by taking the mean of the two formulas.

  5. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.

  6. Bilinear interpolation - Wikipedia

    en.wikipedia.org/wiki/Bilinear_interpolation

    In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation. It is usually applied to functions sampled on a 2D rectilinear grid , though it can be generalized to functions defined on the vertices of (a mesh of) arbitrary convex quadrilaterals .

  7. Divided differences - Wikipedia

    en.wikipedia.org/wiki/Divided_differences

    In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation.

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    A Lozenge diagram is a diagram that is used to describe different interpolation formulas that can be constructed for a given data set. A line starting on the left edge and tracing across the diagram to the right can be used to represent an interpolation formula if the following rules are followed: [5]

  9. Trilinear interpolation - Wikipedia

    en.wikipedia.org/wiki/Trilinear_interpolation

    Trilinear interpolation as two bilinear interpolations followed by a linear interpolation. Trilinear interpolation is a method of multivariate interpolation on a 3-dimensional regular grid . It approximates the value of a function at an intermediate point ( x , y , z ) {\displaystyle (x,y,z)} within the local axial rectangular prism linearly ...