enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nyquist rate - Wikipedia

    en.wikipedia.org/wiki/Nyquist_rate

    Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing , the Nyquist rate , named after Harry Nyquist , is a value equal to twice the highest frequency ( bandwidth ) of a given function or signal.

  3. Nyquist frequency - Wikipedia

    en.wikipedia.org/wiki/Nyquist_frequency

    For a given sampling rate (samples per second), the Nyquist frequency (cycles per second) is the frequency whose cycle-length (or period) is twice the interval between samples, thus 0.5 cycle/sample. For example, audio CDs have a sampling rate of 44100 samples/second. At 0.5 cycle/sample, the corresponding Nyquist frequency is 22050 cycles ...

  4. Normalized frequency (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Normalized_frequency...

    When is normalized with reference to the sampling rate as ′ =, the normalized Nyquist angular frequency is π radians/sample. The following table shows examples of normalized frequency for f = 1 {\displaystyle f=1} kHz , f s = 44100 {\displaystyle f_{s}=44100} samples/second (often denoted by 44.1 kHz ), and 4 normalization conventions:

  5. Nyquist–Shannon sampling theorem - Wikipedia

    en.wikipedia.org/wiki/Nyquist–Shannon_sampling...

    The Nyquist–Shannon sampling theorem is an essential principle for digital signal processing linking the frequency range of a signal and the sample rate required to avoid a type of distortion called aliasing. The theorem states that the sample rate must be at least twice the bandwidth of the signal to avoid aliasing.

  6. File:Nyquist example.svg - Wikipedia

    en.wikipedia.org/wiki/File:Nyquist_example.svg

    The Nyquist Plot for a sample function () = + + that can be converted to frequency by replacing with (imaginary frequency) and . Created using Python and matplotlib. Created using Python and matplotlib.

  7. Pulse-code modulation - Wikipedia

    en.wikipedia.org/wiki/Pulse-code_modulation

    Between samples no measurement of the signal is made; the sampling theorem guarantees non-ambiguous representation and recovery of the signal only if it has no energy at frequency f s /2 or higher (one half the sampling frequency, known as the Nyquist frequency); higher frequencies will not be correctly represented or recovered and add aliasing ...

  8. Undersampling - Wikipedia

    en.wikipedia.org/wiki/Undersampling

    A lower value of n will also lead to a useful sampling rate. For example, using n = 4, the FM band spectrum fits easily between 1.5 and 2.0 times the sampling rate, for a sampling rate near 56 MHz (multiples of the Nyquist frequency being 28, 56, 84, 112, etc.). See the illustrations at the right.

  9. Sampling (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(signal_processing)

    The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: 50 Hz – PAL video; 60 / 1.001 Hz ~= 59.94 Hz – NTSC video