Search results
Results from the WOW.Com Content Network
A subset A of positive integers has natural density α if the proportion of elements of A among all natural numbers from 1 to n converges to α as n tends to infinity.. More explicitly, if one defines for any natural number n the counting function a(n) as the number of elements of A less than or equal to n, then the natural density of A being α exactly means that [1]
Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.
This result became a special case of Szemerédi's theorem on the density of sets of integers that avoid longer arithmetic progressions. [4] To distinguish Roth's bound on Salem–Spencer sets from Roth's theorem on Diophantine approximation of algebraic numbers , this result has been called Roth's theorem on arithmetic progressions . [ 11 ]
A property holds "generically" on a set if the set satisfies some (context-dependent) notion of density, or perhaps if its complement satisfies some (context-dependent) notion of smallness. For example, a property which holds on a dense G δ ( intersection of countably many open sets ) is said to hold generically.
A current axiomatic definition is that real numbers form the unique (up to an isomorphism) Dedekind-complete ordered field. [d] Other common definitions of real numbers include equivalence classes of Cauchy sequences (of rational numbers), Dedekind cuts, and infinite decimal representations. All these definitions satisfy the axiomatic ...
It has two definitions: either the integer part of a division (in the case of Euclidean division) or a fraction or ratio (in the case of a general division). For example, when dividing 20 (the dividend ) by 3 (the divisor ), the quotient is 6 (with a remainder of 2) in the first sense and 6 + 2 3 = 6.66... {\displaystyle 6+{\tfrac {2}{3}}=6.66 ...
True arithmetic is defined to be the set of all sentences in the language of first-order arithmetic that are true in , written Th(). This set is, equivalently, the (complete) theory of the structure N {\displaystyle {\mathcal {N}}} .