Search results
Results from the WOW.Com Content Network
For a given sampling rate (samples per second), the Nyquist frequency (cycles per second) is the frequency whose cycle-length (or period) is twice the interval between samples, thus 0.5 cycle/sample. For example, audio CDs have a sampling rate of 44100 samples/second. At 0.5 cycle/sample, the corresponding Nyquist frequency is 22050 cycles/second .
The term Nyquist rate is also used in a different context with units of symbols per second, which is actually the field in which Harry Nyquist was working. In that context it is an upper bound for the symbol rate across a bandwidth-limited baseband channel such as a telegraph line [ 2 ] or passband channel such as a limited radio frequency band ...
English: This is a typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth).
The Nyquist Plot for a sample function () = + + that can be converted to frequency by replacing with (imaginary frequency) and . Created using Python and matplotlib. Created using Python and matplotlib.
When is normalized with reference to the sampling rate as ′ =, the normalized Nyquist angular frequency is π radians/sample. The following table shows examples of normalized frequency for f = 1 {\displaystyle f=1} kHz , f s = 44100 {\displaystyle f_{s}=44100} samples/second (often denoted by 44.1 kHz ), and 4 normalization conventions:
The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: 50 Hz – PAL video; 60 / 1.001 Hz ~= 59.94 Hz – NTSC video
The Nyquist–Shannon sampling theorem is an essential principle for digital signal processing linking the frequency range of a signal and the sample rate required to avoid a type of distortion called aliasing. The theorem states that the sample rate must be at least twice the bandwidth of the signal to avoid aliasing.
A lower value of n will also lead to a useful sampling rate. For example, using n = 4, the FM band spectrum fits easily between 1.5 and 2.0 times the sampling rate, for a sampling rate near 56 MHz (multiples of the Nyquist frequency being 28, 56, 84, 112, etc.). See the illustrations at the right.