Search results
Results from the WOW.Com Content Network
Secondary hyperaldosteronism (also hyperreninism, or hyperreninemic hyperaldosteronism) is due to overactivity of the renin–angiotensin–aldosterone system (RAAS).. The causes of secondary hyperaldosteronism are accessory renal veins, fibromuscular dysplasia, reninoma, renal tubular acidosis, nutcracker syndrome, ectopic tumors, massive ascites, left ventricular failure, and cor pulmonale.
Other causes of treatment-resistant hypertension include renal artery stenosis, secondary hyperaldosteronism, pheochromocytoma, deoxycorticosterone- or renin-secreting tumors, and kidney ischemia. Excess consumption of licorice can inhibit 11β-hydroxysteroid dehydrogenase and cause similar symptoms as PA.
Pseudohyperaldosteronism (also pseudoaldosteronism) is a medical condition which mimics the effects of elevated aldosterone (hyperaldosteronism) by presenting with high blood pressure, low blood potassium levels (hypokalemia), metabolic alkalosis, and low levels of plasma renin activity (PRA).
Aldosterone is the primary of several endogenous members of the class of mineralocorticoids in humans. [citation needed] Deoxycorticosterone is another important member of this class. Aldosterone tends to promote Na + and water retention, and lower plasma K + concentration by the following mechanisms:
It selectively stimulates secretion of aldosterone. The secretion of aldosterone has a diurnal rhythm. Control of aldosterone release from the adrenal cortex: [citation needed] The role of the renin–angiotensin system: Angiotensin is involved in regulating aldosterone and is the core regulator. Angiotensin II acts synergistically with potassium.
On one hand, mutations on the gene NR3C2 (coding the mineralocorticoid receptor) cause the synthesis of a non-functional receptor which is unable to bind aldosterone or function correctly. In the kidney, aldosterone plays an important role of regulating sodium and potassium homeostasis by its actions on distal nephron cells. [3]
Cortisol at high concentrations can cross-react and activate the mineralocorticoid receptor due to the non-selectivity of the receptor, leading to aldosterone-like effects in the kidney. This is what causes the hypokalemia, hypertension, and hypernatremia associated with the syndrome. Patients often present with severe hypertension and end ...
Generally, the symptoms manifest through the systemic effects of cortisol and aldosterone. [ 2 ] [ 3 ] In secondary and tertiary adrenal insufficiency, there is no effect on the production of aldosterone within the zona glomerulosa as this process is regulated by the renin–angiotensin–aldosterone system (RAAS), not ACTH.