enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Protein folding - Wikipedia

    en.wikipedia.org/wiki/Protein_folding

    Protein folding must be thermodynamically favorable within a cell in order for it to be a spontaneous reaction. Since it is known that protein folding is a spontaneous reaction, then it must assume a negative Gibbs free energy value. Gibbs free energy in protein folding is directly related to enthalpy and entropy. [12]

  3. Folding funnel - Wikipedia

    en.wikipedia.org/wiki/Folding_funnel

    The diagram sketches how proteins fold into their native structures by minimizing their free energy. The folding funnel hypothesis is a specific version of the energy landscape theory of protein folding, which assumes that a protein's native state corresponds to its free energy minimum under the solution conditions usually encountered in cells.

  4. Rossmann fold - Wikipedia

    en.wikipedia.org/wiki/Rossmann_fold

    The Rossmann fold is a tertiary fold found in proteins that bind nucleotides, such as enzyme cofactors FAD, NAD +, and NADP +.This fold is composed of alternating beta strands and alpha helical segments where the beta strands are hydrogen bonded to each other forming an extended beta sheet and the alpha helices surround both faces of the sheet to produce a three-layered sandwich.

  5. Trefoil knot fold - Wikipedia

    en.wikipedia.org/wiki/Trefoil_knot_fold

    The knotted C-terminus of the protein is shown in blue. The trefoil knot fold is a protein fold in which the protein backbone is twisted into a trefoil knot shape. "Shallow" knots in which the tail of the polypeptide chain only passes through a loop by a few residues are uncommon, but "deep" knots in which many residues are passed through the ...

  6. Biomolecular structure - Wikipedia

    en.wikipedia.org/wiki/Biomolecular_structure

    Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.

  7. Levinthal's paradox - Wikipedia

    en.wikipedia.org/wiki/Levinthal's_paradox

    Levinthal's paradox is a thought experiment in the field of computational protein structure prediction; protein folding seeks a stable energy configuration. An algorithmic search through all possible conformations to identify the minimum energy configuration (the native state) would take an immense duration; however in reality protein folding happens very quickly, even in the case of the most ...

  8. Chaperone (protein) - Wikipedia

    en.wikipedia.org/wiki/Chaperone_(protein)

    Proteins in the Hsp100/Clp family form large hexameric structures with unfoldase activity in the presence of ATP. These proteins are thought to function as chaperones by processively threading client proteins through a small 20 Å (2 nm) pore, thereby giving each client protein a second chance to fold.

  9. Unfolded protein response - Wikipedia

    en.wikipedia.org/wiki/Unfolded_protein_response

    A simplified diagram of the processes involved in protein folding. The polypeptide is translated from its ribosome directly into the ER, where it is glycosylated and guided through modification steps to reach its desired conformation. It is then transported from the ER to the Golgi apparatus for final modifications.