enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eddington–Finkelstein coordinates - Wikipedia

    en.wikipedia.org/wiki/Eddington–Finkelstein...

    The blue line is an example of one of the v constant lines. Plotted are the light cones at various values of r. The green lines are various u constant lines. Note that they approach r=2GM assymptotically. In these coordinates, the horizon is the black hole horizon (nothing can come out).

  3. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    (Supermassive black holes up to 21 billion (2.1 × 10 10) M ☉ have been detected, such as NGC 4889.) [16] Unlike stellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the ...

  4. Boyer–Lindquist coordinates - Wikipedia

    en.wikipedia.org/wiki/Boyer–Lindquist_coordinates

    In the mathematical description of general relativity, the Boyer–Lindquist coordinates [1] are a generalization of the coordinates used for the metric of a Schwarzschild black hole that can be used to express the metric of a Kerr black hole. The Hamiltonian for particle motion in Kerr spacetime is separable in Boyer–Lindquist coordinates.

  5. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    The black hole event horizon bordering exterior region I would coincide with a Schwarzschild t-coordinate of + while the white hole event horizon bordering this region would coincide with a Schwarzschild t-coordinate of , reflecting the fact that in Schwarzschild coordinates an infalling particle takes an infinite coordinate time to reach the ...

  6. Sphere of influence (black hole) - Wikipedia

    en.wikipedia.org/wiki/Sphere_of_influence_(black...

    The sphere of influence is a region around a supermassive black hole in which the gravitational potential of the black hole dominates the gravitational potential of the host galaxy. The radius of the sphere of influence is called the "(gravitational) influence radius". There are two definitions in common use for the radius of the sphere of ...

  7. Gullstrand–Painlevé coordinates - Wikipedia

    en.wikipedia.org/wiki/Gullstrand–Painlevé...

    At r/M = 500, the black hole is still very far away. It subtends a diametrical angle of ~ 1 degree in the sky. The stars are not distorted much by the presence of the black hole, except for the stars directly behind it. Due to gravitational lensing, these obstructed stars are now deflected 5 degrees away from the back. In between these stars ...

  8. Kerr metric - Wikipedia

    en.wikipedia.org/wiki/Kerr_metric

    The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

  9. Carter constant - Wikipedia

    en.wikipedia.org/wiki/Carter_constant

    The Carter constant is a conserved quantity for motion around black holes in the general relativistic formulation of gravity. Its SI base units are kg 2 ⋅m 4 ⋅s −2 . Carter's constant was derived for a spinning, charged black hole by Australian theoretical physicist Brandon Carter in 1968.