Search results
Results from the WOW.Com Content Network
If the interior product of a vector field with the symplectic form is an exact form (and in particular, a closed form), then it is called a Hamiltonian vector field. If the first De Rham cohomology group H 1 ( M ) {\displaystyle H^{1}(M)} of the manifold is trivial, all closed forms are exact, so all symplectic vector fields are Hamiltonian.
In a nutshell, once a set of measurements of the system state over some period of time has been acquired, one then finds the derivatives of these measurements, which forms a local vector field. They can then determine a global vector field consistent with this local field. This is usually done by a least squares fit to the derivative data.
It provides a rich Excel-like user interface and its built-in vector programming language FPScript has a syntax similar to MATLAB. FreeMat, an open-source MATLAB-like environment with a GPL license. GNU Octave is a high-level language, primarily intended for numerical computations. It provides a convenient command-line interface for solving ...
A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .
If a vector field has negative divergence in some area, there will be field lines ending at points in that area. The Kelvin–Stokes theorem shows that field lines of a vector field with zero curl (i.e., a conservative vector field, e.g. a gravitational field or an electrostatic field) cannot be closed loops. In other words, curl is always ...
Just as every symplectic structure is isomorphic to one of the form V ⊕ V ∗, every complex structure on a vector space is isomorphic to one of the form V ⊕ V. Using these structures, the tangent bundle of an n-manifold, considered as a 2n-manifold, has an almost complex structure, and the cotangent bundle of an n-manifold, considered as a ...
It is a well-known result [3] that such vector fields are isomorphic to , the tangent space at identity. In fact, if we let act on itself via right-multiplication, the corresponding fundamental vector fields are precisely the left-invariant vector fields.
SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3] SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies.