Search results
Results from the WOW.Com Content Network
An irreversible process increases the total entropy of the system and its surroundings. The second law of thermodynamics can be used to determine whether a hypothetical process is reversible or not. Intuitively, a process is reversible if there is no dissipation. For example, Joule expansion is irreversible because initially the system is not ...
Every process occurring in nature proceeds in the sense in which the sum of the entropies of all bodies taking part in the process is increased. In the limit, i.e. for reversible processes, the sum of the entropies remains unchanged. [44] [45] [46] Rather like Planck's statement is that of George Uhlenbeck and G. W. Ford for irreversible phenomena.
Heat transfer is the natural process of moving energy to or from a system, other than by work or the transfer of matter. In a diathermal system, the internal energy can only be changed by the transfer of energy as heat: Δ U s y s t e m = Q . {\displaystyle \Delta U_{\rm {system}}=Q.}
An irreversible process degrades the performance of a thermodynamic system, designed to do work or produce cooling, and results in entropy production. The entropy generation during a reversible process is zero. Thus entropy production is a measure of the irreversibility and may be used to compare engineering processes and machines.
As time passes, the gas obviously expands to fill the whole box, so that the final state is a box full of gas. This is an irreversible process, since if the box is full at the beginning (experiment B), it does not become only half-full later, except for the very unlikely situation where the gas particles have very special locations and speeds.
For thermodynamics, a natural process is a transfer between systems that increases the sum of their entropies, and is irreversible. [2] Natural processes may occur spontaneously upon the removal of a constraint, or upon some other thermodynamic operation , or may be triggered in a metastable or unstable system, as for example in the ...
In thermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system.In a dissipative process, energy (internal, bulk flow kinetic, or system potential) transforms from an initial form to a final form, where the capacity of the final form to do thermodynamic work is less than that of the initial form.
The operation of the one-way wall relies on an irreversible atomic and molecular process of absorption of a photon at a specific wavelength, followed by spontaneous emission to a different internal state. The irreversible process is coupled to a conservative force created by magnetic fields and/or light.