enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iodine-131 - Wikipedia

    en.wikipedia.org/wiki/Iodine-131

    Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.

  3. Radioactive iodine uptake test - Wikipedia

    en.wikipedia.org/wiki/Radioactive_iodine_uptake_test

    The patient swallows a radioisotope of iodine in the form of capsule or fluid, and the absorption (uptake) of this radiotracer by the thyroid is studied after 4–6 hours and after 24 hours with the aid of a scintillation counter. The dose is typically 0.15–0.37 MBq (4–10 μCi) of 131 I iodide, or 3.7–7.4 MBq (100–200 μCi) of 123 I ...

  4. Isotopes of iodine - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_iodine

    Iodine-124 can be made by numerous nuclear reactions via a cyclotron. The most common starting material used is 124 Te. Iodine-124 as the iodide salt can be used to directly image the thyroid using positron emission tomography (PET). [9] Iodine-124 can also be used as a PET radiotracer with a usefully longer half-life compared with fluorine-18 ...

  5. Radioisotope renography - Wikipedia

    en.wikipedia.org/wiki/Radioisotope_renography

    The test was first introduced in 1956, using iodine-131 diodrast. [25] [26] Later developments included iodine-131, and then iodine-123, labelled ortho-Iodohippuric acid (OIH, marketed as Hippuran). [27] [28] 99m Tc-MAG3 has replaced 131 I-OIH because of better quality imaging regardless of the level of kidney function, [29] and lower radiation ...

  6. Nuclear fission product - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission_product

    The non-radioactive iodide "saturates" the thyroid, causing less of the radioiodine to be stored in the body. Administering potassium iodide reduces the effects of radio-iodine by 99% and is a prudent, inexpensive supplement to fallout shelters. A low-cost alternative to commercially available iodine pills is a saturated solution of potassium ...

  7. Plummer effect - Wikipedia

    en.wikipedia.org/wiki/Plummer_effect

    Unlike the Wolff–Chaikoff effect, the Plummer effect does not prevent the thyroid from taking up radioactive iodine, e.g. in the case of nuclear emergencies.Therefore, "plummering" with high-dose iodine is only effective in a short time window after the release of radionuclides. [9]

  8. Iodine-129 - Wikipedia

    en.wikipedia.org/wiki/Iodine-129

    129 I is one of the seven long-lived fission products that are produced in significant amounts. Its yield is 0.706% per fission of 235 U. [7] Larger proportions of other iodine isotopes such as 131 I are produced, but because these all have short half-lives, iodine in cooled spent nuclear fuel consists of about 5/6 129 I and 1/6 the only stable iodine isotope, 127 I.

  9. Iodine-123 - Wikipedia

    en.wikipedia.org/wiki/Iodine-123

    Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).