Search results
Results from the WOW.Com Content Network
The series = + = + + is known as the alternating harmonic series. It is conditionally convergent by the alternating series test , but not absolutely convergent . Its sum is the natural logarithm of 2 .
The geometric series 1 / 2 − 1 / 4 + 1 / 8 − 1 / 16 + ⋯ sums to 1 / 3 .. The alternating harmonic series has a finite sum but the harmonic series does not.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In the following, a sum or product taken over p always represents a sum or product taken over a specified set of primes. The proof rests upon the following four inequalities: Every positive integer i can be uniquely expressed as the product of a square-free integer and a square as a consequence of the fundamental theorem of arithmetic .
For instance, rearranging the terms of the alternating harmonic series so that each positive term of the original series is followed by two negative terms of the original series rather than just one yields [34] + + + = + + + = + + + = (+ + +), which is times the original series, so it would have a sum of half of the natural logarithm of 2. By ...
The Kempner series is the sum of the reciprocals of all positive integers not containing the digit "9" in base 10. Unlike the harmonic series, which does not exclude those numbers, this series converges, specifically to approximately 22.9207 . A palindromic number is one that remains the same when its digits are reversed.
Suppose now that, more generally, a rearranged series of the alternating harmonic series is organized in such a way that the ratio p n /q n between the number of positive and negative terms in the partial sum of order n tends to a positive limit r. Then, the sum of such a rearrangement will be (),
Indeed, the sum of the absolute values of each term is + + + +, or the divergent harmonic series. According to the Riemann series theorem, any conditionally convergent series can be permuted so that its sum is any finite real number or so that it diverges. When an absolutely convergent series is rearranged, its sum is always preserved.