Search results
Results from the WOW.Com Content Network
The 41.8% point is the wavelength-frequency-neutral peak (i.e. the peak in power per unit change in logarithm of wavelength or frequency). These are the points at which the respective Planck-law functions 1 / λ 5 , ν 3 and ν 2 / λ 2 , respectively, divided by exp ( hν / k B T ) − 1 attain their maxima.
The wave associated with a particle of a given mass, such as an atom, has a defined frequency, and a change in the duration of one cycle from peak to peak that is sometimes called its Compton periodicity. Such a matter wave has the characteristics of a simple clock, in that it marks out fixed and equal intervals of time.
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.
For example, the photons emitted by a radio station broadcast at the frequency ν = 100 MHz, have an energy content of νh = (1 × 10 8) × (6.6 × 10 −34) = 6.6 × 10 −26 J, where h is the Planck constant. The wavelength of the station is λ = c/ν = 3 m, so that λ/(2π) = 48 cm and the volume is 0.109 m 3.
His thesis started from the hypothesis, "that to each portion of energy with a proper mass m 0 one may associate a periodic phenomenon of the frequency ν 0, such that one finds: hν 0 = m 0 c 2. The frequency ν 0 is to be measured, of course, in the rest frame of the energy packet. This hypothesis is the basis of our theory."
Longer-wavelength radiation such as visible light is nonionizing; the photons do not have sufficient energy to ionize atoms. Throughout most of the electromagnetic spectrum, spectroscopy can be used to separate waves of different frequencies, so that the intensity of the radiation can be measured as a function of frequency or wavelength ...
Tuning dial on 1946 Dynatron Merlin T.69 console radio receiver, showing LW wavelengths between 800 and 2000 metres (375–150 kHz). In radio, longwave, long wave or long-wave, [1] and commonly abbreviated LW, [2] refers to parts of the radio spectrum with wavelengths longer than what was originally called the medium-wave broadcasting band.