Search results
Results from the WOW.Com Content Network
Wavefronts propagating toward a single point yield positive vergence. This is also referred to as convergence since the wavefronts are all converging to the same point of focus. Contrarily, wavefronts propagating away from a single source point give way to negative vergence. Negative vergence is also called divergence.
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
Exaggerated convergence is called cross eyed viewing (focusing on the nose, for example). When looking into the distance, the eyes diverge until parallel, effectively fixating on the same point at infinity (or very far away). Vergence movements are closely connected to accommodation of the eye.
Convergence spaces generalize the notions of convergence that are found in point-set topology, including metric convergence and uniform convergence. Every topological space gives rise to a canonical convergence but there are convergences, known as non-topological convergences , that do not arise from any topological space. [ 1 ]
Beam divergence usually refers to a beam of circular cross section, but not necessarily so. A beam may, for example, have an elliptical cross section, in which case the orientation of the beam divergence must be specified, for example with respect to the major or minor axis of the elliptical cross section.
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
The second is a strengthening to divergence everywhere. In French. Lennart Carleson, "On convergence and growth of partial sums of Fourier series", Acta Math. 116 (1966) 135–157. Richard A. Hunt, "On the convergence of Fourier series", Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), 235–255 ...
There is a concept virtual object that is similarly defined; an object is virtual when forward extensions of rays converge toward it. [1] This is observed in ray tracing for a multi-lenses system or a diverging lens.