enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    According to the IAU's explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than ...

  3. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  4. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).

  5. Tidal heating of Io - Wikipedia

    en.wikipedia.org/wiki/Tidal_heating_of_Io

    As Jupiter is very massive, the side of Io nearest to Jupiter has a slightly larger gravitational pull than the opposite side. This difference in gravitational forces cause distortion of Io’s shape. Differently from the Earth’s only moon, Jupiter has two other large moons (Europa and Ganymede) that are in an orbital resonance with it.

  6. Jupiter - Wikipedia

    en.wikipedia.org/wiki/Jupiter

    Entering a Hohmann transfer orbit from Earth to Jupiter from low Earth orbit requires a delta-v of 6.3 km/s, [170] which is comparable to the 9.7 km/s delta-v needed to reach low Earth orbit. [171] Gravity assists through planetary flybys can be used to reduce the energy required to reach Jupiter. [172]

  7. Europe's Jupiter probe to stage daring lunar-Earth fly-by - AOL

    www.aol.com/news/europes-jupiter-probe-stage...

    Just over a year after it was launched, the European Space agency's Jupiter Icy Moons Explorer (JUICE) is returning towards Earth on Aug. 19-20 and will use the braking effect of its gravity to ...

  8. Surface gravity - Wikipedia

    en.wikipedia.org/wiki/Surface_gravity

    A white dwarf's surface gravity is around 100,000 g (10 6 m/s 2) whilst the neutron star's compactness gives it a surface gravity of up to 7 × 10 12 m/s 2 with typical values of order 10 12 m/s 2 (that is more than 10 11 times that of Earth). One measure of such immense gravity is that neutron stars have an escape velocity of around 100,000 km ...

  9. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    For an object of mass the energy required to escape the Earth's gravitational field is GMm / r, a function of the object's mass (where r is radius of the Earth, nominally 6,371 kilometres (3,959 mi), G is the gravitational constant, and M is the mass of the Earth, M = 5.9736 × 10 24 kg).