Search results
Results from the WOW.Com Content Network
Figure 1: Tidal interaction between the spiral galaxy NGC 169 and a smaller companion [1]. The tidal force or tide-generating force is the difference in gravitational attraction between different points in a gravitational field, causing bodies to be pulled unevenly and as a result are being stretched towards the attraction.
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).
The actual Hill radius for the Earth-Moon pair is on the order of 60,000 km (i.e., extending less than one-sixth the distance of the 378,000 km between the Moon and the Earth). [9] In the Earth-Sun example, the Earth (5.97 × 10 24 kg) orbits the Sun (1.99 × 10 30 kg) at a distance of 149.6 million km, or one astronomical unit (AU). The Hill ...
The major heating source of Earth and the Moon is radioactive heating, but the heating source on Io is tidal heating. As Jupiter is very massive, the side of Io nearest to Jupiter has a slightly larger gravitational pull than the opposite side. This difference in gravitational forces cause distortion of Io’s shape.
Jupiter–Earth [f] 49.1° 40 y: 28% 3:19 ... Lower oblateness of the primary alters its gravitational field in such a way that different possible resonances are ...
The publication of the law has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors. [1] [2] [3] This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning. [4]
The most common base models to calculate the sphere of influence is the Hill sphere and the Laplace sphere, but updated and particularly more dynamic ones have been described. [ 2 ] [ 3 ] The general equation describing the radius of the sphere r SOI {\displaystyle r_{\text{SOI}}} of a planet: [ 4 ] r SOI ≈ a ( m M ) 2 / 5 {\displaystyle r ...
Jupiter shown in the image 'Jupiter Marble' as recorded by Juno. The Gravity Science experiment and instrument set aboard the Juno Jupiter orbiter is designed to monitor Jupiter's gravity. [1] [2] [3] It maps Jupiter's gravitational field, which will allow the interior of Jupiter to be better understood. [3]